

Seal Grid

SealGrid® No Reinforcement Deformation (mm)

Description

SealGrid® consists of high strength glass fibre roving knitted to a paving fabric to form a reinforced composite paving fabric.

The reinforcing effect of the low strain glass filaments in combination with the waterproofing, stress relieving and bonding properties of the paving fabric leads to a dramatic reduction of reflective cracking under asphalt overlays.

Properties of Glass Fibre Roving

- Strength = 50 x 50 kN/m or 100 x 100 kN/m
- Strain < 5 %
- Knitted to the paving fabric in a grid pattern.
- Flat weave intersections prevent crushing at nodes
- Unaffected by most chemicals and high temperatures (>1 000 'C)

Properties of Paving Fabric

- Provides a waterproofing interlayer
- Ensures a constant thickness bitumen SAMI interlayer
- Provides a stress relieving interlayer
- Unaffected by most chemicals and high temperature (>260 °C)

Economic Benefit

SealGrid® can reduce traffic induced crack propagation by a factor of greater than 7. This equates to either a considerable saving in overlay thickness or an increased life cycle.

Product Benefits

- The glass fiber roving provides a high strength interlayer at very low strain, which effectively stitches cracks together
- The bitumen impregnated paving fabric component of the SealGricr provides a waterproof barrier and a stress absorbing under layer.
- SealGrid® provides an excellent adhesion bond to existing surfaces, ensuring strong interlock between the
 existing surface and the new overlay
- No levelling layer is required over shallow milled surfaces as SealGrie is flexible and conforms around milled irregularities, while the paving fabric acts as a padding between the milled surface and glass grid

Application Areas

Under Or Between Asphalt Layers

- Where high horizontal or vertical stresses occur
- On road widening schemes with differential settlement
- Where extremely high traffic stresses occur, such as airport runways, docklands or heavy vehicle parking areas
- Where stress cracking is possible, such as over expansive clay sub-grades
- On chemically stabilized bases such as cement treated bases (CM)
- On roads constructed over fill embankments
- Over joints in concrete carriageways
- Where wide temperature fluctuations occur
- On milled surfaces where cracks are still evident